Episode 25: Tension pneumothorax 2

tp2 fin

Where can you undertake decompression of a pneumothorax?

Be particularly careful when using the 2nd intercostal space mid-clavicular line that you are sufficiently lateral. For example, here are the locations identified as ‘2nd ICS mid clavicular line’ amongst 25 EM physicians in a 2005 EMJ paper.

emermed-2005-November-22-11-788-F1.large

From http://emj.bmj.com/content/22/11/788

The Three Kings: George Clooney’s recommended approach to decompression of a tension pneumothorax. Note – again please do not use this location!

Devices used for decompression:

 

Dressings available for covering an open pneumothorax +/- thoracostomy in a spontaneously breathing patient:

 

References

  • Ball, C. G., Wyrzykowski, A. D., Kirkpatrick, A. W., Dente, C. J., Nicholas, J. M., Salomone, J. P., et al. (2010). Thoracic needle decompression for tension pneumothorax: clinical correlation with catheter length. Canadian Journal of Surgery Journal Canadien De Chirurgie53(3), 184–188.
  • Barton, E. D., Epperson, M., Hoyt, D. B., Fortlage, D., & Rosen, P. (1995). Prehospital needle aspiration and tube thoracostomy in trauma victims: a six-year experience with aeromedical crews. The Journal of Emergency Medicine13(2), 155–163.
  • Beckett, A., Savage, E., Pannell, D., Acharya, S., Kirkpatrick, A., & Tien, H. C. (2011). Needle Decompression for Tension Pneumothorax in Tactical Combat Casualty Care: Do Catheters Placed in the Midaxillary Line Kink More Often Than Those in the Midclavicular Line? The Journal of Trauma71, S408–S412. http://doi.org/10.1097/TA.0b013e318232e558
  • Cullinane, D., Morris, J., Bass, J., & Rutherford, E. (2001). Needle thoracostomy may not be indicated in the trauma patient. Injury32, 749–752.
  • Ferrie, E. P., Collum, N., & McGovern, S. (2005). The right place in the right space? Awareness of site for needle thoracocentesis. Emergency Medicine Journal22(11), 788–789. http://doi.org/10.1136/emj.2004.015107
  • Fitzgerald, M., Mackenzie, C. F., Marasco, S., Hoyle, R., & Kossmann, T. (2008). Pleural decompression and drainage during trauma reception and resuscitation. Injury39(1), 9–20. http://doi.org/10.1016/j.injury.2007.07.021
  • Givens, M. L., Ayotte, K., & Manifold, C. (2004). Needle thoracostomy: implications of computed tomography chest wall thickness. Academic Emergency Medicine : Official Journal of the Society for Academic Emergency Medicine11(2), 211–213. http://doi.org/10.1197/j.aem.2003.09.015
  • Harcke, H. T., Mabry, R. L., & Mazuchowski, E. L. (2013). Needle thoracentesis decompression: observations from postmortem computed tomography and autopsy. Journal of Special Operations Medicine : a Peer Reviewed Journal for SOF Medical Professionals13(4), 53–58.
  • Inaba, K., Branco, B. C., Eckstein, M., Shatz, D. V., Martin, M. J., Green, D. J., et al. (2011). Optimal positioning for emergent needle thoracostomy: a cadaver-based study. The Journal of Trauma71(5), 1099–103– discussion 1103. http://doi.org/10.1097/TA.0b013e31822d9618
  • Inaba, K., Ives, C., McClure, K., Branco, B. C., Eckstein, M., Shatz, D., et al. (2012). Radiologic evaluation of alternative sites for needle decompression of tension pneumothorax. Archives of Surgery (Chicago, Ill : 1960)147(9), 813–818. http://doi.org/10.1001/archsurg.2012.751
  • Jadder, U., & McAuley, D. (2005). Transthoracic ultrasonography to diagnose pneumothorax in trauma. BestBETS.org, 1–3.
  • Jones, R., & Hollingsworth, J. (2002). Tension pneumothoraces not responding to needle thoracocentesis. Emergency Medicine Journal19, 176–177.
  • MD, A. R. M., MD, M. E. R., MD, C. S. C., & MD, J. L. M. (2015). Ultrasound determination of chest wall thickness: implications for needle thoracostomy. The American Journal of Emergency Medicine, 1–5. http://doi.org/10.1016/j.ajem.2010.06.030
  • MD, B. B., & MD, J.-M. T. (2012). Initial Management and Resuscitation of Severe Chest Trauma. Emergency Medicine Clinics of NA30(2), 377–400. http://doi.org/10.1016/j.emc.2011.10.010
  • MD, E. J. C., MD, C. H. C., BS, R. M., PHD, C. L. A., RDMS, C. A. K. M. M., RDMS, S. S. M., & RDMS, J. C. F. M. (2013). Ultrasound in Emergency Medicine. The Journal of Emergency Medicine44(1), 142–149. http://doi.org/10.1016/j.jemermed.2012.02.032
  • Netto, F. A. C. S., Shulman, H., Rizoli, S. B., Tremblay, L. N., Brenneman, F., & Tien, H. (2008). Are needle decompressions for tension pneumothoraces being performed appropriately for appropriate indications? The American Journal of Emergency Medicine26(5), 597–602. http://doi.org/10.1016/j.ajem.2007.08.016
  • Rathinam, S., Grobler, S., Bleetman, A., Kink, T., & Steyn, R. (2014). Evolved design makes ThoraQuik safe and user friendly in the management of pneumothorax and pleural effusion. Emergency Medicine Journal31(1), 59–64. http://doi.org/10.1136/emermed-2012-201821
  • Rathinam, S., Quinn, D. W., Bleetman, A., Wall, P., & Steyn, R. S. (2011). Evaluation of ThoraQuik: a new device for the treatment of pneumothorax and pleural effusion. Emergency Medicine Journal28(9), 750–753. http://doi.org/10.1136/emj.2009.082297
  • Sanchez, L. D., Straszewski, S., Saghir, A., Khan, A., Horn, E., Fischer, C., et al. (2011). Anterior versus lateral needle decompression of tension pneumothorax: comparison by computed tomography chest wall measurement. Academic Emergency Medicine : Official Journal of the Society for Academic Emergency Medicine18(10), 1022–1026. http://doi.org/10.1111/j.1553-2712.2011.01159.x
  • Wax, D. B., & Leibowitz, A. B. (2007). Radiologic assessment of potential sites for needle decompression of a tension pneumothorax. Anesthesia and Analgesia105(5), 1385–8– table of contents. http://doi.org/10.1213/01.ane.0000282827.86345.ff
  • Yamagiwa, T., Morita, S., Yamamoto, R., Seki, T., Sugimoto, K., & Inokuchi, S. (2012). Determination of the appropriate catheter length for needle thoracostomy by using computed tomography scans of trauma patients in Japan. Injury43(1), 42–45. http://doi.org/10.1016/j.injury.2010.11.022
  • Zengerink, I., Brink, P. R., Laupland, K. B., Raber, E. L., Zygun, D., & Kortbeek, J. B. (2008). Needle thoracostomy in the treatment of a tension pneumothorax in trauma patients: what size needle? The Journal of Trauma64(1), 111–114.  http://doi.org/10.1097/01.ta.0000239241.59283.03

Episode 24: Tension pneumothorax 1

tp1

Firstly, go and read Simon and Tim Harris’ great 2005 paper on the subject which we reference repeatedly in the podcast. It is available free open access here.

A pneumothorax exists when air accumulates in the potential space between the visceral and parietal pleura:

Pneumothorax during respiratory cycle

From: www.wisdomjobs.com

A tension pneumothorax exists when the air in the pleural cavity is under high pressure resulting in compression of the surrounding structures.

Simon mentions Rutherford’s diagram in the podcast. This is taken from a 1968 paper examining the progressive pathophysiology of a tension pneumothorax. The graph shows the changes in intrapleural pressure (on the ipsilateral and contralateral sides) in spontaneously breathing goats who had air injected into one side of their chest. We can’t find the full article free/open access anywhere I’m afraid. But this is the reference: THE PATHOPHYSIOLOGY OF PROGRESSIVE, TENSION PNEUMOTHORAX. Rutherford RB, Hurt HH, Brickman RD, Tubb JM. Journal of Trauma and Acute Care Surgery, March 1968,8(2):212-227

Diagram from Rutherford's 1968 paper on tension pneumothorax

The imaging findings of tension pneumothorax might look like this:

More plain film images are available in this article on the Radiopaedia website.

And you can see what a CT scan of a patient with tension pneumothorax looks like in this vimeo shared on the Life in the Fast Lane website.

If you want to know about ultrasound findings of pneumothorax, check out this great R.E.B.E.L.EM post.

References:

Leigh-Smith S, Harris T. Tension pneumothorax—time for a re-think? EMJ. 2005; 22:8-16.  doi.org/10.1136/emj.2003.010421

Roberts DJ, Leigh-Smith S et al. Clinical Presentation of patients with a Tension Pneumothorax – a systematic review. Annals of Surgery. 2015; 261: 1068-78. doi: 10.1097/SLA.0000000000001073

Episode 23: Intraosseus access

IO Access 2

The various devices which Tony discusses are:

This video shows the rapidity of infusion entering the circulation from a humeral IO.

This is the paper mentioned by Tony, which shows the stepwise improvement in mortality amongst combat casualties from military conflict 2003-2012, including the ‘unicorn’ graph:

Fig 2 from Penn-Barwell et al 2015

Anatomy of bones and the humerus related to intraosseus access

Long bone anatomy

Humeral anatomy

 

The surface anatomy of the shoulder

Surface anatomy of shoulder

The bony anatomy of the shoulder

Bony anatomy of shoulder

Muscular attachments of the shoulder

Muscular anatomy of shoulder

Blood vessels and nerves around the proximal humerus

A demonstration of the landmarking process for humeral intraosseus insertion is available here.

Want to know more about EZ-IO access?

The education resources which Tom mentions are available here.

 

Episode 20: End Tidal Carbon Dioxide

Guest contributor: Lauren Weekes

etco2

What is ETCO2?

  • % or partial pressure of carbon dioxide measured somewhere near the mouth at the end of a normal exhalation (hence end tidal, end of tidal volume breath)
  • To get a measurement the following systems need to be functioning:
    • Metabolically active tissue to produce CO2
    • Circulation & cardiac output to carry that CO2 to the lungs in blood
    • Transfer of CO2 between the blood and the air in the lung
    • Gas in and out of the lung to excrete the CO2
  • Brilliant monitor in anaesthesia in that in elective cases, we start off with healthy patients are looking for deviations from the norm- and a normal ETCO2 trace tells you that all those components are functioning.
  • It is still extremely useful in prehospital care, but we just have to remember that an abnormal trace or value may be caused by problems with one or more of those systems i.e circulation, gas exchange, ventilation (rarely tissue metabolism)
  • Much better than pulse oximetry, because of the difference in lag time between clinical change occurring and being able to see it on the monitor- less than 3 seconds for sidestream capnography, compared to up to 90s for pulse oximetry

 

How does ETCO2 relate to arterial CO2?

  • What we’re REALLY interested in is arterial CO2 as this is the clinically significant value in a number of clinical scenarios; for example in the brain-injured patient, we want to keep arterial CO2 values normal as we know that this determines the state of cerebral vasoconstriction or dilation, and thus affects ICP. In non-brain injured patients, high arterial CO2 can lead to a respiratory acidosis, and low pH values are harmful to most body tissues, in particular the clotting cascade (because of its reliance on enzymes, which function best in a narrow range of pH), and cardiac contractility.
  • In healthy people, ETCO2 is usually 0.5-1kPA LOWER than the arterial value. Why is this? CO2 is only found in parts of the lung which participate in gas exchange, i.e are perfused with blood. So the trachea and first few generations of bronchi do not participate in gas exchange and are known as the dead space. They ARE however filling with gas during breaths, and as such gas from this dead space DILUTES the gas containing CO2 that has come predominantly from the alveoli.
  • What we are assuming when we ask ETCO2 to substitute for arterial CO2 is that there is normal matching of ventilation to perfusion occurring in the lungs, so that all the mixed venous CO2 returning to the lungs from respiring tissue can equilibrate with alveolar gas and be eliminated via ventilation

 

What causes a discrepancy between arterial and ETCO2?

  1. Artefact

Loose connections, not having nasal prongs up nose, dilution with high oxygen flows (partic when using nasal prongs)

  1. Failure of venous CO2 to cross to ventilated alveoli

Alveolar dead space- alveoli are ventilated but not perfused

Classically low cardiac output states, PE, etc

  1. Failure of alveolar gas to be transported out of the lungs because alveoli are perfused but not ventilated (shunt):
  • pneumonia and pulmonary edema, pulm haemorrhage (alveoli filled with fluid)
  • tissue trauma: alveolar wall swelling
  • atelectasis: collapse of alveoli from failure to expand, or absorption of the air out of the alveoli without replacing it
  • mucous/vomit plugging
  • Global ventilation failure e.g airway obstruction, hypoventilation esp where tidal volume is very low- dead space is fixed, so as a proportion of each breath it gets higher as tidal volume reduces until there is minimal ALVEOLAR ventilation

 

 

How do we measure it? 

  • Usually by infra-red absorption- CO2 absorbs infra-red light in a manner proportional to its concentration in the sampled gas.
  • Can be measured from a breathing circuit attached to an invasive airway device e.g supraglottic airway or endotracheal tube, or from a number of methods in the spontaneously breathing patient, such as a specific nasal cannula, or a sampling tube attached to an oxygen mask. Important to note that the waveform, and values for ETCO2 are very different in the spontaneously breathing patient, and we’ll come back to that later.
  • Might be measured directly from the breathing circuit (mainstream) or sucked out of the circuit in a sampling tube (sidestream).
  • Might display results as a waveform with a value given for ETCO2, or simply a number (capnometry) although the latter much less useful.
  • Colorimetric devices are available which change colour, based loosely on percentage of gas present. pH related. Occasionally used as an adjunct to waveform

 

What does the waveform mean?

  • The classic waveform that you will see in textbooks come from CO2 measured in the ventilated patient.
  • The graph has time in seconds along the x axis and partial pressure in kPa along the y axis
  • Phase I (inspiratory baseline) reflects inspired gas, which is normally devoid of carbon dioxide.
  • Phase II (expiratory upstroke) is the transition between dead space and alveolar gas from the respiratory bronchioles and alveoli.
  • Phase III is the alveolar plateau, when largely homogenous gas from the alveoli empties. This is the most accurate reflection of arterial co2
  • Phase 0  is the inspiratory downstroke, the beginning of the next inspiration
  • In the spontaneously breathing patient, there is not usually a plateau phase, which makes interpretation of ETCO2 values more difficult

 

EVIDENCE

ETT placement

  • All major anaesthetic organisations mandate the use of ETCO2 to confirm ETT placement
  • Good evidence that the trace is not completely flat even in cardiac arrest- Silvestri Ann Emerg Med 2005
  • Should seen >7 waveforms to exclude oesophageal (Orinato 1993)

 

Cardiac arrest- general

  • 2010 & 2015 ERC guidelines recommend use of waveform capnography
  • Not new- 1978 paper Kalenda in Resuscitation described the use of capnogram as a guide to CPR efficacy

 

Predicting ROSC

  • Grmec 2003 & 2011 in Critical Care
  • ETCO2 of >2.4kpa after 20min predictive of rosc , <1.3 = no ROSC
  • Alwens 2001 used cut off 10mmHg
  • Systematic review in 2013 Resuscitation used cut off of 1.3kPa but this wasn’t 100% sensitive across all studies
  • Concerns also raised by Norwegian paper in Resuscitation again 2011 showing a number of confounding factors made interpretation of etco2 problematic inc rhythm, bystander CPR, cause of arrest

 

CPR quality

  • As noted in 1978, ETCO2 drops off when chest compressions become ineffective.
  • Qvigstad et al showed in again in Resuscitation in 2013, confirming inter-individual variation in effectiveness of CPR using ETCO2 as a surrogate for CO

 

Trauma

  • Deakin et al. (J. trauma 2004) showed that end-tidal CO2 may be of value in predicting outcome from major trauma (19). In a study of 191 blunt trauma patients, only 5% of patients with an end-tidal CO2 determination of 3.25 kPa survived to discharge

 

 

PRACTICAL USE

When should we use ETCO2 monitoring in the prehospital setting?

  • Mandatory if intubating (RSI, cardiac arrest)
  • Mandatory if performing procedural sedation where consciousness impaired
  • Highly recommended in cardiac arrest
  • Highly recommended in all critically ill patients

 

In cardiac arrest:

Attach to circuit/ BVM at soonest available opportunity

Use it to confirm intubation (if using)

Use it as a guide:

  • If ETCO2 has been steady during CPR but then begins to fall, consider changing rescuer
  • As corroborating evidence around decision making- if there has been no ROSC after 20min of full ALS protocol and ETCO2 remains below 1.3kPA, you are highly unlikely to resuscitate that patient
  • If there is a sudden increase in ETCO2- well done, you’ve achieved ROSC (even if you can’t yet feel a pulse- in fact, maybe you needn’t do a pulse check if you’ve got ETCO2)
  • Optimise ventilation post ROSC as you are now dealing with a head-injured patient.

 

In the critically ill patient:

  • If I can only have one monitor on an entrapped patient, I’d pick capnography
  • You will learn more quickly than any other method when your patient is deteriorating- e.g in blood loss, ETC02 will gradually fall. In the head injured patient who’s coning, you’ll see apnoeas and gradually rising ETCO2. In the heart failure patient who’s about to arrest, you’ll see their ETCO2 fall precipitously almost before anything else. In the comatose patient, you’ll be able to see that their airway is obstructed on the capnography a full 30 to 60s before their sats drop (by which point you’re already a long way down the oxygen dissociation curve).
  • You can also see when your treatment is working- if you give a patient in septic shock some fluid and improve their CO, you’ll see a rise in ETC02
  • You can confirm adequacy of respiratory function in the fitting or post-ictal patient when all other methods fail

 

PITFALLS

Device failure- lines blocking, batteries running out, pump failure.

Test by blowing

Over-interpreting the accuracy of non-invasive capnography

  • Those lovely graphs showing curare clefts, rebreathing, bronchospasm etc you see on lots of different websites and in textbooks? They are almost all referring to capnography in the intubated and ventilated patient, who has a constant tidal volume.
  • Numbers are often wildly inaccurate in the critically unwell population, and there may be an ET-arterial gradient of 10kPA.
  • What CAN you tell from it? 1. Ventilation is occurring (accurate RR) 2. There is a cardiac output 3. You can interpret trends ie a gradual rise or fall in CO2, in the given clinical context 4. Very low is bad whichever way you look at it

 

Sometimes a low ETCO2 value is due to hyperventilation (because as we all remember, arterial CO2 concentration is almost linearly related to alveolar minute ventilation) BUT it may be hypoventilation with increased proportion of dead space ventilation compared to alveolar ventilation

 

Not using capnography

  • The more you use it, the more familiar with various patterns you will become
  • Stick it on everyone –it causes no harm. See what happens when you give a decent dose of morphine:
    • slows respiratory rate but breaths are normal volume
    • You get reduced alveolar MINUTE ventilation but normal alveolar TIDAL ventilation
    • Therefore what you see at ETCO2 is reasonably representative of arterial concentration because the same number of alveoli are ventilated and have opportunity to equilibrate with the blood CO2
    • This is unlike when a patient is making low tidal volume breaths, because then you’re largely ventilating dead space, and a much smaller number of alveoli are ventilated and thus equilibrium cannot occur between blood and gas

Demonstration traces: 

From: Capnography Outside the Operating Rooms, Anesthes. 2013;118(1):192-201. doi:10.1097/ALN.0b013e318278c8b6

A Prolonged phase II, increased α angle, and steeper phase III suggest bronchospasm or airway obstruction.

B Expiratory valve malfunction resulting in elevation of the baseline, and the angle between the alveolar plateau and the downstroke of inspiration is increased from 90°. This is due to rebreathing of expiratory gases from the expiratory limb during inspiration.

C Inspiratory valve malfunction resulting in rebreathing of expired gases from inspiratory limb during inspiration (reference 5 for details).

D Capnogram with normal phase II but with increased slope of phase III. This capnogram is observed in pregnant subjects under general anesthesia (normal physiologic variant and details in reference 9).

E Curare cleft: Patient is attempting to breathe during partial muscle paralysis. Surgical movements on the chest and abdomen can also result in the curare cleft.

F Baseline is elevated as a result of carbon dioxide rebreathing.

G Esophageal intubation resulting in the gastric washout of residual carbon dioxide and subsequent carbon dioxide will be zero.

H  Spontaneously breathing carbon dioxide waveforms where phase III is not well delineated.

I  Dual capnogram in one lung transplantation patient. The first peak in phase III is from the transplanted normal lung, whereas the second peak is from the native disease lung. A variation of dual capnogram (steeple sign capnogram – dotted line) is seen if there is a leak around the sidestream sensor port at the monitor. This is because of the dilution of expired PCO2with atmospheric air.

J Malignant hyperpyrexia where carbon dioxide is raising gradually with zero baseline suggesting increased carbon dioxide production with carbon dioxide absorption by the soda lime.

K Classic ripple effect during the expiratory pause showing cardiogenic oscillations. These occur as a result of to-and-for movement of expired gases at the sensor due to motion of the heartbeat during expiratory pause when respiratory frequency of mechanical ventilation is low. Ripple effect like wave forms also occur when forward flow of fresh gases from a source during expiratory pause intermingles with expiratory gases at the sensor.

L  Sudden raise of baseline and the end-tidal PCO2(PETCO2) due to contamination of the sensor with secretions or water vapor. Gradual rise of baseline and PETCO2occurs when soda lime is exhausted.

M Intermittent mechanical ventilation (IMV) breaths in the midst of spontaneously breathing patient. A comparison of the height of spontaneous breaths compared to the mechanical breaths is useful to assess spontaneous ventilation during weaning process.

N  Cardiopulmonary resuscitation: capnogram showing positive waveforms during each compression suggesting effective cardiac compression generating pulmonary blood.

O  Capnogram showing rebreathing during inspiration. This is normal in rebreathing circuits such as Mapleson D or Bain circuit.

Useful links: 

https://lifeinthefastlane.com/ccc/capnography-waveform-interpretation/

http://www.capnography.com/new/index.php?option=com_content&view=article&id=131&Itemid=993

Episode 19: Surgical Airway

surgical airway

 

The West Midlands surgical skills course offers cadaveric training for PHEM and EM practitioners on rare life saving procedures. Click here to go straight to their page.

Anatomy

Screen Shot 2017-06-22 at 13.43.36

The Guidelines

Screen Shot 2017-06-22 at 13.20.19

Difficult Airway Society 2015 guidelines for management of unanticipated difficult intubation in adults. C. Frerk et al. Difficult Airway Society: Intubation guidelines working group. British Journal of Anaesthesia, 115 (6): 827–848 (2015) doi:10.1093/bja/aev371

For more information, have a look at the Difficult Airway Society website.

AAGBI Safer Prehospital Anaesthesia

Click here for the 2017 guidelines

The Kit

Know what your service carries, practice with that equipment, then you will be familiar with the kit you are using in the heat of the moment.

always-carry-your-scalpel-7-638

Minimal kit: scalpel, bougie, tube

Tracheal dilators and tracheal hook

The Technique

For a demonstration of the DAS recommended technique for surgical front of neck access, have a look at this video, recorded by colleagues over at openairway.org:

Just a Routine operation

The video we mention in the podcast produced by Martin Bromiley after the death of his wife, Elaine, in a can’t intubate can’t oxygenate scenario is available here:

https://www.youtube.com/watch?v=JzlvgtPIof4

And have a look at the website for more of Martin’s work with the Clinical Human Factors group.

Other fantastic #FOAM resources regarding airway management are available:

From Nicholas Chrimes  at http://vortexapproach.org

From the fabulous people over at Life in the Fast Lane including a video demo from Scott Weingart from EMCrit: https://lifeinthefastlane.com/ccc/surgical-cricothyroidotomy/

References

This is Tim’s recent publication we mention in the ‘cast!: Nutbeam, T., Clarke, R., Luff, T., Enki, D. and Gay, D. (2017), The height of the cricothyroid membrane on computed tomography scans in trauma patients. Anaesthesia. doi:10.1111/anae.13905

Aslani, A., Ng, S.-C., Hurley, M., McCarthy, K. F., McNicholas, M., & McCaul, C. L. (2012). Accuracy of identification of the cricothyroid membrane in female subjects using palpation: an observational study. Anesthesia and Analgesia, 114(5), 987–992. http://doi.org/10.1213/ANE.0b013e31824970ba
Bair, A. E., & Chima, R. (2015). The Inaccuracy of Using Landmark Techniques for Cricothyroid Membrane Identification: A Comparison of Three Techniques. Academic Emergency Medicine : Official Journal of the Society for Academic Emergency Medicine, 22(8), 908–914. http://doi.org/10.1111/acem.12732
Bennett, J. D., Guha, S. C., & Sankar, A. B. (1996). Cricothyrotomy: the anatomical basis. Journal of the Royal College of Surgeons of Edinburgh, 41(1), 57–60.
Boon, J. M., Abrahams, P. H., Meiring, J. H., & Welch, T. (2004). Cricothyroidotomy: a clinical anatomy review. Clinical Anatomy (New York, NY), 17(6), 478–486. http://doi.org/10.1002/ca.10231
Buonopane, C. E., Pasta, V., Sottile, D., Del Vecchio, L., Maturo, A., Merola, R., et al. (2014). Cricothyrotomy performed with the Melker™ set or the QuickTrach™ kit: procedure times, learning curves and operators’ preference. Il Giornale Di Chirurgia, 35(7-8), 165–170.
Cook, T., Woodall, N., & Frerk, C. (2015). Appendix 4 NAP4 Summary: major complications of airway management in the United Kingdom. British Journal of Anaesthesia (2011) 106 (5): 617-631. https://doi.org/10.1093/bja/aer058
Dover, K., Howdieshell, T. R., & Colborn, G. L. (1996a). The dimensions and vascular anatomy of the cricothyroid membrane: relevance to emergent surgical airway access. Clinical Anatomy (New York, NY), 9(5), 291–295. http://doi.org/10.1002/(SICI)1098-2353(1996)9:5<291::AID-CA1>3.0.CO;2-G
Frerk, C., Mitchell, V. S., & McNarry, A. F. (2015). Difficult Airway Society 2015 guidelines for management of unanticipated difficult intubation in adults. British Journal of Anaesthesia (2015) 115 (6): 827-848. https://doi.org/10.1093/bja/aev371
Hubert, V., Duwat, A., Deransy, R., Mahjoub, Y., & Dupont, H. (2014). Effect of simulation training on compliance with difficult airway management algorithms, technical ability, and skills retention for emergency cricothyrotomy. Anesthesiology, 120(4), 999–1008. http://doi.org/10.1097/ALN.0000000000000138
Langvad, S., Hyldmo, P. K., Nakstad, A. R., Vist, G. E., & Sandberg, M. (2013a). Emergency cricothyrotomy–a systematic review. Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine, 21, 43. http://doi.org/10.1186/1757-7241-21-43
Nakstad, A. R., Bredmose, P. P., & Sandberg, M. (2013). Comparison of a percutaneous device and the bougie-assisted surgical technique for emergency cricothyrotomy: an experimental study on a porcine model performed by air ambulance anaesthesiologists. Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine, 21, 59. http://doi.org/10.1186/1757-7241-21-59
 Navsa, N., Tossel, G., & Boon, J. M. (2005). Dimensions of the neonatal cricothyroid membrane – how feasible is a surgical cricothyroidotomy? Paediatric Anaesthesia, 15(5), 402–406. http://doi.org/10.1111/j.1460-9592.2005.01470.x
 Prithishkumar, I. J., & David, S. S. (2010). Morphometric analysis and clinical application of the working dimensions of cricothyroid membrane in south Indian adults: With special relevance to surgical cricothyroidotomy. Emergency Medicine Australasia, 22(1), 13–20. http://doi.org/10.1111/j.1742-6723.2009.01245.x
 The clinical anatomy of several invasive procedures. American Association of Clinical Anatomists, Educational Affairs Committee. (1999). The clinical anatomy of several invasive procedures. American Association of Clinical Anatomists, Educational Affairs Committee. Clinical Anatomy (New York, NY), 12(1), 43–54. http://doi.org/10.1002/(SICI)1098-2353(1999)12:1<43::AID-CA7>3.0.CO;2-W

 

 

Episode 18: The Ventilator Part 2

Vent 2

Many apologies for the delay in the release of this podcast!

A second apology is due for the sound quality – it was recorded at a ‘live’ HEMS base – this has led to lots of background noise I am afraid. We have done our best to edit this out / reduce its effect but I’m afraid we are not experts in this area!

This podcast is part 2 of this series on the ventilator – and you should be familiar with the first in this series before progressing further!

Others have written excellent summaries of the themes of this podcast – please follow the links below:

In summary:

  • PEEP is important – you need to understand its benefits and potential harms.
  • If the patient is requiring more oxygen than you would expect try increasing the PEEP.
  • You really, really need to know your kit. Know what your ventilator can and can’t do –  know how it works and how its alarms work.

 

Episode 17: Broken? Impact on the rescuer

Broken...

This episode has been compiled over a year – many thanks to our four contributors, who have shared their stories and knowledge. They were interviewed at TraumaCare 2016, TraumaCare 2017 and the BASICS/FPHC Conference 2016.

If you ever need to talk about the impact of stresses and work experiences on you, please find a friend, colleague, GP, work Occupational Health Service, or one of the charities listed below.


Tony’s article describing his experience of providing medical care to those involved in the Shoreham air crash:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4758481/


Links to some of the resources Matt mentioned:

Mind Blue Light Campaign:

0j6q5p5Y

http://www.mind.org.uk/news-campaigns/campaigns/bluelight/

Watch this excerpt from the West Wing:

If you would like to check your own resilience score, you could use this tool recommended by Matt:

https://www.robertsoncooper.com/iresilience/

http://www.marchonstress.com

http://www.theredpoppycompany.co.uk


More information from Rusty’s interview:

MaslowsHierarchyOfNeeds.svg

By FireflySixtySeven using Inkscape, from Maslow’s A Theory of Human Motivation.

Want to know more about EMDR?

http://emdrassociation.org.uk/what-is-emdr/background-and-basics/

Rusty recommended The Howl – EMS Wolfpack podcasts for more on this subject:

https://itunes.apple.com/gb/podcast/the-howl/id1073333491?mt=2&i=364170004


This is the article written by fire fighter Rob Norman

https://www.theguardian.com/public-leaders-network/2016/jan/30/mental-health-dead-people-flashbacks-emergency-services-fireighters

Episode 16: “Blood”

blood

 

There is the potential for significant controversy in this month’s episode – and we would really appreciate the feedback of the prehospital community on this one.

We have held the ‘no clear fluids’ mantra close to our hearts for most of our prehospital careers. We ‘know’ that giving sea water to our patients, and diluting all of blood’s ‘good bits’ can’t be healthy. We believed in permissive hypotension – we were probably wrong.

Priorities for the bleeding trauma patient must include:

  • Minimum time to control of bleeding (tourniquets / haemostatics / knife / interventional radiology)
  • Normothermia
  • Appropriate choice of destination (knife / IR)
  • ? Early correction of hypotension (especially if blunt trauma / associated head injury)

The balances of harms in the context of blunt trauma between the negative effects of infusing saline versus the negative effects of hypotension are unknown and prehospital actions need to be customised to an individual patient and situation.

In systems in which a potentially less harmful resuscitation strategy can be delivered sooner – PH systems with packed red cells / fresh frozen plasma / whole blood or freeze dried plasma, then it seems pragmatic to aim for normotension (predicted normal blood pressure) sooner in the patient’s care timeline than we have been e.g. at one hour. In patients with penetrating trauma permissive hypotension may remain useful for longer or at least until a patient can be differentiated and the bleeding controlled.

Lots to think about!

 

References:

RePhill Trial Homepage: http://www.birmingham.ac.uk/research/activity/mds/trials/bctu/trials/portfolio-v/Rephill/index.aspx

  1. Smith IM, James RH, Dretzke J, Midwinter MJ. Prehospital Blood Product Resuscitation for Trauma. Shock. 2016 Jul;46(1):3–16.
  2. Shorter times to packed red blood cell transfusion are associated with decreased risk of death in traumatically injured patients. Powell EK, Hinckley WR, Gottula A, Hart KW, Lindsell CJ, McMullan JT. J Trauma Acute Care Surg. 2016 Sep;81(3):458-62.
  3. Penn-Barwell JG, Roberts SA, Midwinter MJ, Bishop JR: Improved survival in UK combat casualties from Iraq and Afghanistan: 2003-2012. J Trauma Acute Care Surg 78(5):1014–1020, 2015.
  4. Holcomb JB, Donathan DP, Cotton BA, Del Junco DJ, Brown G, Wenckstern TV, Podbielski JM, Camp EA, Hobbs R, Bai Y, et al.: Prehospital transfusion of plasma and red blood cells in trauma patients. Prehosp Emerg Care 19(1):1–9, 2015.
  5. Weaver AE, Eshelby S, Norton J, Lockey DJ: The introduction of on-scene blood transfusion in a civilian physician-led pre-hospital trauma service. Scand J Trauma Resusc Emerg Med 21(Suppl1):S27, 2013.
  6. Bodnar D, Rashford S, Williams S, Enraght-Moony E, Parker L, Clarke B: The feasibility of civilian prehospital trauma teams carrying and administering packed red blood cells. Emerg Med J 31(2):93–95, 2014.

Episode 15: Paediatric Trauma & How to Do Sim

paed-sim

Paediatric Trauma

TARN report: Severe Injury in Children

Simulation

ATACC:The Anaesthesia Trauma and Critical Care course

Thanks to Mark Forrest (@ObiDoc) for sharing these videos:

References

  1. Spurr J, Gatward J, Joshi N, Carley SD. Top 10 (+1) tips to get started with in situ simulation in emergency and critical care departments. EMJ. 2016.
  2. Bredmose PP, Habig K, Davies G, Grier G, Lockey D. Scenario based outdoor simulation in pre-hospital trauma care using a simple mannequin model. Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine. 2010.
  3. Patterson MD, Geis GL, Falcone RA, LeMaster T, Wears RL. In situ simulation: detection of safety threats and teamwork training in a high risk emergency department. BMJ Quality & Safety. 2013; 22: 468-477.
  4. Boet S, Bould MD, Layat Burn C, Reeves S. Twelve tips for a successful interprofessional team-based high-fidelity simulation educational session. Medical Teacher. 2014; 36: 853-857.

Episode 14: Thoracotomy

thoracotomy

 

Details of the surgical skills course mentioned in the podcast can be found here:

https://wmstc.co.uk/portfolio/phem-ess/

The Sydney HEMS Traumatic Cardiac arrest operating procedure can be viewed on their website, and there are a number of useful references within the document:

Policies and Procedures

An excellent ‘how to do it’ paper, published in 2005, by the London HEMS team, can be accessed via the link below:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1726527/pdf/v022p00022.pdf

 

Equipment required for resuscitative thoracotomy:equipment-required-for-thoracotomy

Surface anatomy:

surface-anatomy-for-thoracotomy

Appearance of pericardial clot

pericardial-clot

A foley catheter being used to fill a cardiac wound – note how easily this could be pulled out.

foley-catheter-in-cardiac-wound

An open chest with aortic compression

open-chest-with-aortic-compression

Simulation of resuscitative thoracotomy by London HEMS team.

For an entertaining and insightful discussion about the impact of undertaking thoracotomy, listen to Dr John Hinds talk from SMACC 2015. Highly recommended.

http://intensivecarenetwork.com/hinds-crack-the-chest-get-crucified/

And for a summary of the evidence and recommendations, have a look at the St Emlyns blog:

http://stemlynsblog.org/jc-east-lets-be-blunt-about-ed-thoracotomy/

References

  • Smith JE, Rikard A, Wise D. Traumatic Cardiac Arrest. Journal of the Royal Society of Medicine 2015. 108(1): 11-16.
  • Wise et al. Emergency thoracotomy: “how to do it”. EMJ; 2005: 22-24.
  • Hunt et al. Emergency thoracotomy in thoracic trauma: a review. Injury; 2006 (37): 1-19.
  • Clay et al. Emergency Department thoracotomy for the critically injured patient: Objectives, indications, and outcomes. World Journal of Emergency Surgery; 2006: 1:4.
  • Rhee et al. Survival after Emergency Department thoracotomy: review of published data for last 25 years. J Am Coll Surg; 2000. 190(3): 288-298
  • ACS Committee on Trauma Working Group. Practice Management guidelines for ED Thoracotomy. J Am Coll Surg. 2001, 193 (3): 303-309.
  • Editorial. When should we stop resuscitative efforts after blunt traumatic arrest. Injury; 2008 (39): 967-969.
  • Joint Position Statement of Nat Assoc EMS Physicians and ACS Committee on Trauma. Guidelines for withholding or termination of resuscitation in prehospital cardiopulmonary arrest. J Am Coll Surg; 2003 (1): 106-111.
  • Tarney et al.Outcomes following military traumatic cardiorespiratory arrest: A prospective observational study. Resuscitation; 2011: 1194-1197

Episode 13: The Ventilator

ventilation

Ventilation – a dark art. Difficult to be a master, easy to be average (or terrible)!

This is “part 1”, which includes some of the basic (and not very basic) concepts behind ventilation.

We recorded over 60 minutes of excellent content with George – we will post more below as soon as it is edited. .

Check out Georges powerpoint – its excellent!

introduction-to-mechanical-ventilation-11nov2016-podcast

Episode 12: Breaking Bad News

breaking-bad-news

YouTube videos:

From the police officer’s perspective: https://www.youtube.com/watch?v=toaA_TNwcxg

From the mother’s perspective: https://www.youtube.com/watch?v=0KJZXOKStao

The paper about watching resuscitation is this one:

http://www.nejm.org/doi/full/10.1056/NEJMoa1203366#t=article

This is a section taken from the London Ambulance Service clinical bulletin, from 2011, which includes the SPIKES mnemonic:

las-breaking-bad-news-guidance

The alternative mnemonic mentioned in the podcast is GRIEV_ING, which has been developed for use in the ED.

griev_ing-mnemonic

References

Baile WF, Buckman R, Lenzi R, Glober G, Beale EA, Kudelka AP. Spikes – a six-step protocol for delivering bad news: Application to the patient with cancer. The Oncologist. 2000; 5: 302-311.

Hobgood C, Harward D, Newton K, Davis W. The educational intervention “GRIEV_ING” improves the death notification skills of residents. Journal of Academic Emergency Medicine. 2005; 12: 296-301.

Jabre P, Belpomme V, Azoulay E et al. Fanily presence during cardiopulmonary resuscitation. The New England Journal of Medicine. 2013: 368 (11): 1008-1018.

Episode 11: Gentle Patient Handling

Gentle Patient Handling

 

The paper we mentioned by Jonathan Benger and Jules Blackham can be accessed here:

https://sjtrem.biomedcentral.com/articles/10.1186/1757-7241-17-44

Stable versus unstable spinal injury

The location of an injury and involvement of different structures defines the stability of a spinal injury.

Screen Shot 2016-07-14 at 12.02.03

Anterior column: anterior longitudinal ligament and the anterior half of the vertebral body/disc.

Middle column: posterior half of the vertebral body/disc and the posterior longitudinal ligament.

Posterior column: facet joints, ligamentum flavum, the spinous processes and the interconnecting ligaments.

An injury involving only the anterior column is considered to be stable, as will an isolated fracture of a spinous or transverse process. An unstable injury is one which involves all 3 columns and often one in which 2 columns are disrupted.

Screen Shot 2016-07-14 at 12.20.03

References

  1. Stiell IG, Clement CM, McKnight RD, Brison R, Schull MJ, Rowe BH, et al. The Canadian C-spine rule versus the NEXUS low-risk criteria in patients with trauma. N Engl J Med. 2003 Dec 25;349(26):2510–8.
  2. Oteir AO, Smith K, Stoelwinder JU, Middleton J, Jennings PA. Should suspected cervical spinal cord injury be immobilised?: A systematic review. Injury. Elsevier Ltd; 2015 Apr 1;46(4):528–35.
  3. Smyth M, Cooke MW. Value of a rigid collar: in need of more research and better devices. Emergency Medicine Journal. 2013 May 13;30(6):516–6.
  4. Crane T, Cooke MW, Wellings R, Wayte S, Higgins J. MRI study of effectiveness of cervical spine immobilisation- a pilot study. The University of Warwick. 2007 Aug 1;:1–18.
  5. BOAST2: SPINAL CLEARANCE IN THE TRAUMA PATIENT. British Orthopaedic Association Standards for Trauma (BOAST); 2008. 1 p.
  6. Hauswald M, Ong G, Tandberg D, Omar Z. Out-of-hospital spinal immobilization: its effect on neurologic injury. Acad Emerg Med. 2008 Apr 15;5(3):214–9.
  7. Prasarn ML, Horodyski M, Dubose D, Small J, Del Rossi G, Zhou H, et al. Total Motion Generated in the Unstable Cervical Spine During Management of the Typical Trauma Patient. Spine. 2012 May;37(11):937–42.
  8. Gill DS, Mitra B, Reeves F, Cameron PA, Fitzgerald M, Liew S, et al. Can initial clinical assessment exclude thoracolumbar vertebral injury? Emergency Medicine Journal. 2013 Jul 19;30(8):679–82.
  9. Leech C, Porter K, Bosanko C. Log-rolling a blunt major trauma patient is inappropriate in the primary survey. Emergency Medicine Journal. 2013 Dec 22;31(1):86–6.
  10. Horodyski M, Conrad BP, Del Rossi G, DiPaola CP, Rechtine GR II. Removing a Patient From the Spine Board: Is the Lift and Slide Safer Than the Log Roll? J Trauma. 2011 May;70(5):1282–5.
  11. I J, A M, Yu E, Tulman D, Jones C, Stawicki S. A systematic review of the need for MRI for the clearance of cervical spine injury in obtunded blunt trauma patients afternormal cervical spine CT. Journal of Emergencies, Trauma, and Shock. 2014 Feb 11;7(4):251–5.
  12. Sundstrøm T, Asbjørnsen H, Habiba S, Sunde GA, Wester K. Prehospital Use of Cervical Collars in Trauma Patients: A Critical Review. J Neurotrauma. 2014 Mar 15;31(6):531–40.
  13. Armstrong BP, Simpson HK, Crouch R, Deakin CD. Prehospital clearance of the cervical spine: does it need to be a pain in the neck? Emerg Med J. 2007 Jul 1;24(7):501–3.
  14. PhD JRE, PhD JWS, OTD TLS, MSOT JLE, EMTP JSSM, MD RSN. Selected Topics: Prehospital Care. J Emerg Med. Elsevier Ltd; 2013 Jan 1;44(1):122–7.
  15. Connor D, Greaves I, Porter K, Bloch M, consensus group Faculty of Pre-Hospital Care. Pre-hospital spinal immobilisation: an initial consensus statement. Emerg Med J. 2013 Dec 1;30(12):1067–9.
  16. Fattah S, Johnsen AS, Andersen JE, Vigerust T, Olsen T, Rehn M. Rapid extrication of entrapped victims in motor vehicle wreckage using a Norwegian chainmethod – cross-sectional and feasibility study. 2014 Jul 3;14(1):1–5.
  17. Stiell IG, Nesbitt LP, Pickett W, Munkley D, Spaite DW, Banek J, et al. The OPALS Major Trauma Study: impact of advanced life-support on survival and morbidity. CMAJ. 2008 Apr 22;178(9):1141–52.
  18. Edwards MA, Verwey J, Herbert S, Horne S, Smith JE. Cervical spine clearance in the elderly: do elderly patients get a bad deal? Emerg Med J. 2013 May 23.
  19. Sundstrøm T, Asbjørnsen H, Habiba S, Sunde GA, Wester K. Prehospital Use of Cervical Collars in Trauma Patients: A Critical Review. J Neurotrauma. 2014 Mar 15;31(6):531–40.
  20. Shafer JS, Naunheim RS. Cervical spine motion during extrication: a pilot study. West J Emerg Med. 2009 May;10(2):74–8.
  21. Davis JW, Phreaner DL, Hoyt DB, Mackersie RC. The etiology of missed cervical spine injuries. J Trauma. 1993 Mar;34(3):342–6.
  22. Hale DF, Fitzpatrick CM, Doski JJ, Stewart RM, Mueller DL. Absence of clinical findings reliably excludes unstable cervical spine injuries in children 5 years or younger. Journal of Trauma and Acute Care Surgery. 2015 May;78(5):943–8.
  23. Benger J, Blackham J. Why do we put cervical collars on conscious trauma patients? Scand J Trauma Resusc Emerg Med. 2009;17(1):44.

Episode 10: Stress Inoculation

Inoculation training

Big thanks to Anand Swaminathan @EMSwami, Chris Nickson @precordialthump, Jesse Spurr @Inject_Orange, Chris Hicks @HumanFact0rz, and Tom Evens @doctomevens

Their pre-workshop reading/listening recommendations:

http://stemlynsblog.org/englishman-south-africa-robert-lloyd-st-emlyns/

http://emcrit.org/podcasts/toughness-michael-lauria-i/

IMG_6894

 

BandwidthIMG_6896

IMG_6892

 

Visualisation tips:

IMG_6895

 

Episode 9: Maternal Collapse

Mat collapse-2

Apologies for the quality of the sound – we recorded in a very echo-ey office!

The Royal College of Obstetricians and Gynaecologists (RCOG) green top guideline is accessible here:

https://www.rcog.org.uk/globalassets/documents/guidelines/gtg_56.pdf

We have talked about ramping previously, in Episode 6: Oxygenation. This is how a pregnant patient should be positioned for airway manoeuvres and interventions, for example induction of anaesthesia and intubation.

Screen Shot 2016-03-17 at 10.09.34

The ILCOR 2015 update pertaining to Cardiac Arrest Associated with Pregnancy is accessible here:

https://eccguidelines.heart.org/index.php/circulation/cpr-ecc-guidelines-2/part-10-special-circumstances-of-resuscitation/

Including this picture demonstrating manual displacement of the uterus:Manual displacement

The concept of deliberate practice is discussed in more details on these sites:

This is Cliff Reid (resus.me) talking about his lecture from the Royal College of Emergency Medicine Conference in 2015:

http://resus.me/rcem15/

And this is Simon Carley’s (St Emlyn’s) blogpost on the subject:

http://stemlynsblog.org/the-pursuit-of-mastery-through-deliberate-practice/

And last, but not least, Scott Weingart (EMCRIT) from SMACC 2013

http://emcrit.org/podcasts/path-to-insanity/

 

References

Advanced Life Support (7th Edition). Resuscitation Council UK. 2016.

Parry R, Asmussen T, Smith JE. Perimortem caesarean section. EMJ. 2016; 33: 224-229.

Clark SL, Cotton DB, Pivarnik JM et al. Position change and central hemodynamic profile during normal third trimester pregnancy and post partum. Am J Obstetrics & Gynaecology. 1991; 164: 883-887.

Bamber JH, Dresner M. Aortocaval compression in pregnancy: the effect of changing the degree and direction of lateral tilt on maternal cardiac output. Anaesthesia & Analgesia. 2003; 97: 256-258.

Lee SWY, Khaw KS, Kee WN, Leung TY, Critchley LAH. Haemodynamic effects from aortocaval compression at different angles of lateral tilt in non-labouring term pregnant women. British Journal of Anaesthesia. 2012; 109: 950-956.

Episode 8: Chemical Suicide

Chemical Suicide

The recent resurgence in this method of suicide has put emergency responders at a significant increase of serious injury and death.

This podcast discussed the current most frequent methods of attempted and successful inhalational suicide  – keep safe.

 

 

There are a multitude of professional and advisory websites out there.

We are keen not to raise awareness of specific combinations of chemicals / products.

Episode 7: Sepsis

We hope you enjoyed our sepsis podcast. It is obviously a huge topic and there is lots of information to cover; a couple of other recently released podcasts are available which are produced with the Emergency Medicine community in mind, but will no doubt expand your knowledge.

 

St Emlyns Induction podcast on Sepsis. March 2016. A great summary of what to do when a patient with suspected sepsis first arrives in the ED.

And from our buddies at HEFT EM CAST:

http://www.heftemcast.co.uk/sepsis-in-the-ed/

A bit more detail covering some of the research in an easy to understand way. It particularly discussed the original Rivers trial which we mention in the podcast.

It’s worth remembering that sepsis is a spectrum of disease when assessing patients.

Slide1

It is worth noting, that with “Sepsis 3” many of these terms will become out-of-date – but validation work is required…

The Rivers’ paper can be accessed here: http://www.nejm.org/doi/full/10.1056/nejmoa010307

It was a single centre study which compared standard care with protocolised resuscitation packaged together as early goal-directed therapy (EGDT). This is what the study did:

rivers jpg

As you will see the trial was relatively small – with only 263 patients being recruited into the trial. What was impressive, and changed practice, forming the basis of the Surviving Sepsis Campaign, was the significant reduction in mortality. Patients in the standard care group had a mortality of 46% compared with the treatment group 30%, which was statistically significant (p=0.009).

Further large randomized controlled studies to try and demonstrate the same mortality benefit from Rivers-style EGDT have not shown the same results (Process, Arise, PROMISe). Patients in these trials were randomly assigned to one of two groups. The ‘intervention’ group received the new treatment, in this case EGDT, which was being tested. The ‘standard care’ group were looked after according to how the clinician would usually treat a patient with severe sepsis. This was the same principle as in the Rivers trial: the standard care group is the ‘control’ group against which changes in outcome for the ‘intervention’ group are compared. The mortality in both groups in all 3 trials was similar, there was not the significant reduction in mortality seen in the Rivers study. This was probably because, as we say in the podcast, ‘standard’ care for sepsis has improved considerably in the intervening years. The control group received many similar treatments as the ‘intervention’ group (just not full protocolised EGDT) highlighting that with good sepsis care (fluid resuscitation, close monitoring, early appropriate antibiotic administration), mortality can be reduced.

Red flag sepsis is a way of identifying those patients with sepsis who are high risk  and who warrant immediate treatment:

red flag

Have a look at the UK Sepsis Trust website: http://sepsistrust.org. There are toolkits available to download, including one specifically written for the prehospital environment with the College of Paramedics, which summarises the recognition and management of sepsis.

 Link to the Sepsis-3 guideline. 

Reviewed (again for the Emergency Medicine community) here.

When Tim talks about test characteristics he is referring to the ability of a test to correctly identify the presence or absence of an illness. Some may think that if a test is positive it always means the patient has the illness, or indeed if it is negative it rules out the possibility of that illness but this is not the case with many of the tests we use.

Think about ECG as an example,test So, where the box is green, the test has given us the correct result for the patient. But, where the box is red the test has given us the incorrect result: you will all be able to think about patients in whom the ECG was normal, but the patient turned out to have had an MI, or when the ECG showed an MI but the patient turned out not to have had one. These tables are used when assessing the usefulness of a test (or it’s sensitivity and specificity), and, when researching how useful tests are we need the majority of patients to fall into the green boxes.

We will put together a podcast on test characteristics over the next couple of months, which will explain this in more detail. An amazing podcast on the subject can be found at SMART EM: SMART Testing: Back to Basics

As always, any feedback, comments etc. – please let us know on the blog below!

  1. Herlitz J, ng AB, m BW-S, Axelsson C, Bremer A, Hagiwara M, et al. Suspicion and treatment of severe sepsis. An overview of the prehospital chain of care. Scand J Trauma Resusc Emerg Med. Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine; 2012 Jun 27;20(1):1–1.
  2. Studnek JR, Artho MR, Garner CL, Jones AE. The impact of emergency medical services on the ED care of severe sepsis. Am J Emerg Med. 2012 Jan;30(1):51–6.
  3. Puskarich MA, Marchick MR, Kline JA, Steuerwald MT, Jones AE. One year mortality of patients treated with an emergency department based early goal directed therapy protocol for severe sepsis and septic shock: a before and after study. Crit Care. 2009;13(5):R167.
  4. Seymour CW, Rea TD, Kahn JM, Walkey AJ, Yealy DM, Angus DC. Severe Sepsis in Pre-Hospital Emergency Care. Am J Respir Crit Care Med. 2012 Dec 15;186(12):1264–71.
  5. Band RA, Gaieski DF, Hylton JH, Shofer FS, Goyal M, Meisel ZF. Arriving by Emergency Medical Services Improves Time to Treatment Endpoints for Patients With Severe Sepsis or Septic Shock. Academic Emergency Medicine. 2011 Aug 30;18(9):934–40.
  6. Seymour CW, Cooke CR, Heckbert SR, Spertus JA, Callaway CW, Martin-Gill C, et al. Prehospital intravenous access and fluid resuscitation in severe sepsis: an observational cohort study. 2014 Oct 28;:1–9.
  7. Trust US. You Gov Poll – Public Awareness of Sepsis. UK Sepsis Trust; 2014 Nov pp. 1–1.
  8. MD GEH, MD RET, MD RS, MD JDL, BS AMB, BS AJS, et al. ACCEPTED MANUSCRIPT. Am J Emerg Med. Elsevier B.V; 2015 Aug 26;:1–31.
  9. Amado Alejandro Baez MD MSc MFFF, MD LC. ACCEPTED MANUSCRIPT. Am J Emerg Med. Elsevier B.V; 2015 Oct 17;:1–16.
  10. Guerra WF, Mayfield TR, Meyers MS, Clouatre AE, Riccio JC. Early detection and treatment of patients with severe sepsis by prehospital personnel. J Emerg Med. 2013 Jun;44(6):1116–25.
  11. Gaieski DF, Mikkelsen ME, Band RA, Pines JM, Massone R, Furia FF, et al. Impact of time to antibiotics on survival in patients with severe sepsis or septic shock in whom early goal-directed therapy was initiated in the emergency department*. Crit Care Med. 2010 Apr;38(4):1045–53.
  12. Yealy DM, Huang DT, Delaney A, Knight M, Randolph AG, Daniels R, et al. Recognizing and managing sepsis: what needs to be done? ??? ??? 2015 Apr 24;:1–10.
  13. Báez AA, Hanudel P, Perez MT, Giráldez EM, Wilcox SR. Prehospital Sepsis Project (PSP): knowledge and attitudes of United States advanced out-of-hospital care providers. Prehosp Disaster Med. 2013 Apr;28(2):104–6.
  14. Harnden A. Parenteral penicillin for children with meningococcal disease before hospital admission: case-control study. BMJ. 2006 Jun 3;332(7553):1295–8.
  15. Femling J, Weiss S, Hauswald E. EMS Patients and Walk-In Patients Presenting With Severe Sepsis: Differences in Management and Outcome. South Med J. 2014.
  16. Gray A, Ward K, Lees F, Dewar C, Dickie S, McGuffie C, et al. The epidemiology of adults with severe sepsis and septic shock in Scottish emergency departments. Emergency Medicine Journal. 2013 Apr 12;30(5):397–401.
  17. Seymour CW, Cooke CR, Mikkelsen ME, Hylton J, Rea TD, Goss CH, et al. Out-of-hospital fluid in severe sepsis: effect on early resuscitation in the emergency department. Prehosp Emerg Care. 2010 Apr;14(2):145–52.
  18. Hahné SJM, Charlett A, Purcell B, Samuelsson S, Camaroni I, Ehrhard I, et al. Effectiveness of antibiotics given before admission in reducing mortality from meningococcal disease: systematic review. BMJ. 2006 Jun 3;332(7553):1299–303.
  19. Wang HE, Weaver MD, Shapiro NI, Yealy DM. Opportunities for Emergency Medical Services care of sepsis. Resuscitation. 2010 Feb;81(2):193–7

 

How to cite this podcast:

Nutbeam T, Bosanko C. Sepsis. PHEMCAST. 2016 [cite Date Accessed]. Available from: http://www.phemcast.co.uk

Episode 6: Oxygenation

Oxygenation

To provide a bit of balance following our earlier hyperoxia podcast, this episode we are discussing circumstances when we want to deliver extra oxygen to patients and ways to do this effectively, including an interview with Sydney HEMS Consultant Yash Wilmalasena on apnoeic oxygenation. Hope you find it useful!

 

Some of the stuff we talked about:

Optimal patient positioning when managing the airway and assisting ventilation has traditionally been taught as ‘sniffing the morning air’, shown here.Screen Shot 2016-03-17 at 09.28.46

But now, learning from bariatric practice we are realising that ramping is better for airway optimisation. In this position the patient’s tragus is lined up with their sternal notch to make the airway as straight as possible.

Screen Shot 2016-03-17 at 10.09.34Taken from: http://www.emsworld.com/article/11264318/airway-management-and-ventilation-best-practices

A water’s circuit looks like this:

Labelled waters circuit

This is an image of the oxygenation dissociation curve mentioned in the podcast. Taken from Weingart & Levitan 2012.Screen Shot 2016-03-17 at 10.14.50

Here are some other great resources which demonstrate some of the principles we have discussed:

Our Birmingham Emergency Medicine colleagues review the evidence so far for apnoeic oxygenation:

http://www.heftemcast.co.uk/apnoeic-oxygenation/

There are some short videos from Scott Weingart demonstrating some of the techniques discussed available here:

http://emcrit.org/preoxygenation

A well written blog post summarising the key features of a BVM from the Life in the Fast Lane team:

http://lifeinthefastlane.com/ccc/bag-mask/

This is a great (and entertaining!) video cast from Emergency Medicine colleagues in the States discussing and demonstrating techniques for optimal bag-valve-mask ventilation.

References

Wilmalasena Y, Burns B, Reid C, Ware S., Habig K. Apneic oxygenation was associated with decreased desaturation rates during rapid sequence intubation by an Australian helicopter emergency medicine service. Annals of Emergency Medicine. 2015; 65(4): 371-376.

Weingart SD, Levitan RM. Preoxygenation and Prevention of Desaturation During Emergency Airway Management. Annals of Emergency Medicine. 2012; 59(3): 165-175.

Weingart SD, Trueger NS, Wong N, Scofi J, Singh N, Rudolph SS. Delayed Sequence Intubation: A Prospective Observational Study. Annals of Emergency Medicine. 2014; 65(4): 349-355.

Weingart SD. Preoxygenation, reoxygenation, and delayed sequence intubation in the Emergency Department. The Journal of Emergency Medicine. 2010;

Grant S, Khan F, Keijzers G, Shirran M, Marneros L. Ventilator-assisted preoxygenation: protocol for combining non-invasive ventilation and apnoeic oxygenation using a portable ventilator. Emergency Medicine Australasia. 2016: 28(1); 67-72.

Von Goedecke A, Wenzel V, Hormann C, Voelckel WG, Wagner-Berger HG, Zecha-Stallinger A, Luger TJ, Keller C. Effects of face mask ventilation in apneic patients with a resuscitation ventilator in comparision with a bag-valve-mask. Journal of Emergency Medicine. 2006: 30(1); 63-67.

Semier MW, Janz DR, Lentz RJ, Matthews DT, Norman BC, Assad TR, Keriwala RD, Ferrell BA, Noto MJ, McKown AC, Kocurek EG, Warren MA, Huerta LE, Rice TW. Randomized trial of apneic oxygenation during endotracheal intubation of the critically ill. American Journal of Respiratory Critical Care Medicine. 2016; 193(3): 273-280. (FELLOW Trial)

How to cite this podcast:

Nutbeam T, Bosanko C. Oxygenation. PHEMCAST. 2016 [cite Date Accessed]. Available from: http://www.phemcast.co.uk

Episode 5: Amputation

Amputation

 

 

Welcome to PHEMCAST episode 5: Amputation

One of the things we never want to have to do, but need to be prepared for. Have a listen, consider your kit, your top-cover arrangements, and when and how you may need to get this done.

This podcast covers, which patients to consider, how to do it and discussion around consent, capacity and top-cover arrangements.

This podcast features interviews with Professor Sir Keith Porter and Caroline Leech, which we hope you will enjoy.

 

Which patients / scenarios:

  1. An immediate and real risk to the patient’s life due to a scene safety emergency.
  2. A deteriorating patient physically trapped by a limb when they will almost certainly die during the time taken to secure extrication
  3. A completely mutilated non-survivable limb retaining minimal attachment, which is delaying extrication and evacuation from the scene in a non-immediate life-threatening situation.
  4. The patient is dead and their limbs are blocking access to potentially live casualties.

 

Which kit:

  • CAT x 2
  • Scalpel
  • Gigli saw (and spare)
  • Arterial forceps x 4
  • Tuff Cut scissors
  • Appropriate dressing (e.g. Israeli combat bandage)

 

Preparation:

  • Sedation or anaesthesia
  • Brief team
  • Plan next phase

 

Stages of amputation process:

  • Apply an effective proximal tourniquet.
  • Amputate as distally as possible.
  • Perform a guillotine amputation.
  • Apply haemostats to large blood vessels.
  • Leave the tourniquet in situ.

(consider IV antibiotics if can be delivered as concurrent activity)

 

Please contribute to the blog below – specifically around top cover arrangements, decision making and individual competency around this procedure.

 

References:

Porter KM. Prehospital amputation. Emerg Med J. 2010 Dec 1;27(12):940–2.

Reid C, Clancy M. Life, limb and sight-saving procedures–the challenge of competence in the face of rarity. Emerg Med J. 2013 Feb 1;30(2):89–90. .

Porter K. Ketamine in prehospital care. Emerg Med J. 2004 May 1;21(3):351–

Brodie S, Hodgetts TJ, Ollerton J, McLeod J, Lambert P, Mahoney P. Tourniquet use in combat trauma: UK military experience. J R Army Med Corps. 2007 Dec 1;153(4):310–3.

Akporehwe NA, Wilkinson PR, Quibell R, Akporehwe KA. Ketamine: a misunderstood analgesic? BMJ. 2006 Jun 24;332(7556):1466.

McNicholas MJ, Robinson SJ, Polyzois I, Dunbar I, Payne AP, Forrest M. ‘Time critical’ rapid amputation using fire service hydraulic cutting equipment. Injury. 2011; 42: 1333-1335.

Episode 4: Chemical incidents

Chemical

We hope you enjoyed this PHEMCast. Please feedback your comments via the blog, twitter or email us on PHEMCAST@gmail.com.

The NARU video we mention in the podcast can be accessed here:

http://naru.org.uk/videos/ior-nhs/

And the paper we discuss is:

  • Chilcott RP. Managing mass casualties and decontamination. Environmental International. 2014; 72: 37-45.

This is the Step 1,2,3 tool described:

Screen Shot 2016-01-04 at 12.15.12

For more information on the toxidromes associated with various chemicals, biological agents and radiation sources have a look at this document (admittedly it’s a few years old but the content is still good, especially the flow chart which is pasted below):

http://www.gov.uk/government/uploads/system/uploads/attachment_data/file/340709/Chemical_biological_radiological_and_nuclear_incidents_management.pdf

Screen Shot 2016-01-04 at 12.11.00

What is an anti-muscarinic chemical?

  • Anti-muscarinic = blocking the muscarinic receptors, ie blocking the effect of acetylcholine, hence also called anti-cholinergic. Impacts on parasympathetic stimulation. Antimuscarinic effects include dilated pupils (leading to blurred vision), reduced secretion of saliva (hence dry mouth), sweat and digestive juices. Relaxation of smooth muscle causing urinary retention, ileus. Also tachycardia, confusion progressing to delirum/coma.
  • Nerve agents inhibit anticholinesterase therefore there is an excess of acetylcholine resulting in opposite features: diarrhoea, urination, miosis, increased bronchial secretions, bronchoconstriction, vomiting, lacrimation, salivation.

 

Always ahead of the curve… St Emlyns have recently published a blog post on this very topic! It’s great, so have a read:

http://stemlynsblog.org/cbrn-an-introduction/

 

Further Reading

  1. Monteith RG. Pearce LDR. Self-care Decontamination within a Chemical Exposure Mass-casualty Incident. Prehospital and Disaster Medicine. 2015; 30: 288-296.
  2. http://chemm.nlm.nih.gov/mmghome.htm
  3. Centers for Disease Control and Prevention. Chemical Suicides in Automobiles – Six States, 2006-2010. JAMA. 2001; 306(16): 1751-1753.
  4. http://www.msdmanuals.com/en-gb/professional/injuries;-poisoning/poisoning/general-principles-of-poisoning#v1118045
  5. https://www.england.nhs.uk/wp-content/uploads/2015/04/eprr-chemical-incidents.pdf
  6. JRCALC http://www2.warwick.ac.uk/fac/med/research/hsri/emergencycare/prehospitalcare/jrcalcstakeholderwebsite/guidelines/chemical_biological_radiological_and_nuclear_incidents_2006.pdf

 

How to cite this podcast:

Nutbeam T, Bosanko C. Chemical Incidents. PHEMCAST. 2016 [cite Date Accessed]. Available from: http://www.phemcast.co.uk

 

 

Episode 3: Hyperoxia

Hyperoxia

 

Hello and welcome to our next episode – we hope you enjoy it. This episode concentrates on hyperoxia – the delivery of lots (often too much) oxygen and the harms it may cause our patients. We both had colds – many apologies for the blocked noses and many sniffs!

We hope you find it useful.

To follow: Dr Matt Thomas from the Great Western Air Ambulance discussing his groups work around reducing hyperoxia post-rosc.

Further reading:

  1.  https://www.brit-thoracic.org.uk/guidelines-and-quality-standards/
  2. Cornet AD, Kooter AJ, Peters MJL, Smulders YM. The potential harm of oxygen therapy in medical emergencies. Crit Care. 2013 Apr 11;17(2):313.
  3. Rincon F, Kang J, Maltenfort M, Vibbert M, Urtecho J, Athar MK, et al. Association Between Hyperoxia and Mortality After Stroke. Crit Care Med. 2014 Feb;42(2):387–96.
  4. Stub D, Smith K, Bernard S, Bray J, Stephenson M, Cameron P, et al. A randomized controlled trial of oxygen therapy inacute myocardial infarction Air Verses Oxygen InmyocarDial infarction study (AVOID Study). American Heart Journal. Mosby, Inc; 2012 Mar 1;163(3):339–345.e1. 3.    Asfar P, Singer M, Radermacher P. Understanding the benefits and harms of oxygen therapy. Intensive Care Med. 2015 Jan 30.
  5. Calzia E, Asfar P, Hauser B, Matejovic M, Ballestra C, Radermacher P, et al. Hyperoxia may be beneficial. Crit Care Med. 2010 Oct;38:S559–68.
  6. Asfar P, Calzia E, Huber-Lang M, Ignatius A, Radermacher P. Hyperoxia during septic shock–Dr. Jekyll or Mr. Hyde? Shock. 2011 Nov 21;37(1):122–3.
  7. Cornet AD, Kooter AJ, Peters MJL, Smulders YM. The potential harm of oxygen therapy in medical emergencies. Crit Care. 2013 Apr 11;17(2):313.
  8. Ligtenberg JJM, Stolmeijer R, Broekema JJ, Maaten ter JC, Zijlstra JG. A little less saturation? Crit Care. 2013 Jun 12;17(3):439.

 

How to cite this podcast:

Nutbeam T, Bosanko C. Hyperoxia. PHEMCAST. 2015 [cite Date Accessed]. Available from: http://www.phemcast.co.uk

Episode 2: The Pelvic Binder

Pelvis-2

Sorry for the slight delay releasing our “October” podcast – but here it is (note how it is cunningly labelled Episode 2)! This month we are reviewing the evidence for the pelvic binder and discussing scenarios in which it should (and should not) be used.

As always, please get in touch with questions and comments, either via the blog, twitter or email phemcast@gmail.com

This is where the greater trochanters are:

greater trochanters

This is where a binder should sit on the pelvis – it commonly ends up higher, either in application or ‘rides up’ during transfer – keep an eye on it!

binder position

These are the different types of fracture pattern that can occur in a pelvic fracture: of course patients can suffer from multiple force vectors so may end up with any combination of these fracture types.

fracture types

Please click on this link below for our video on using a scoop to insert the pelvic binder…

As always… Get in touch!

References

  1. Scott I, Porter K, Laird C, Greaves I, Bloch M. The prehospital management of pelvic fractures: initial consensus statement. EMJ. 2013; 30(12): 1070-1072.
  2. Lee C, Porter K. The prehospital management of pelvic fractures. EMJ. 2007; 24: 130-133.
  3. Prasarn ML, Conrad B, Small J, Horodyski M, Rechtine GR. Comparison of circumferential pelvic sheeting versus the T-POD on unstable pelvic injuries: A cadaveric study of stability. Injury. 2013; 44: 1756-1759.
  4. Trebilcock H. Reducing overtriage and undertriage rates if pelvic fractures and unnecessary pelvic binder applications in major trauma patients. EMJ. 2015; 32(6): e17.
  5. DeAngelis NA, Wixted JJ, Drew J, Eskander MS, Eskander JP, French BG. Use of the trauma pelvic orthotic device (T-POD) for provisional stabilisation of anterior-posterior compression type pelvic fractures: A cadaveric study. Injury. 2008; 39: 903-906.
  6. Bottlang M, Krieg JC, Mohr M, Simpson TS, Madey SM. Emergent management of pelvic ring fractures with use of circumferential compression. The Journal of Bone & Joint Surgery. 2002; 84A (2): 43-47.
  7. Tan ECTH, van Stigt SFL, van Vugt AB. Effect of a new pelvic stabilizer (T-POD) on reduction of pelvic volume and haemodynamic stability in unstable pelvic fractures. Injury. 2010; 41(12): 1239-1243.
  8. Knops SP, Van Lieshout EMM, Spanjersberg WR, Patka P, Schipper IB. Randomised clinical trial comparing pressure characteristics of pelvic circumferential compression devices in healthy volunteers. Injury. 2011; 42(10): 1020-1026.
  9. Mason LW, Boyce DE, Pallister I. Catastrophic myonecrosis following circumferential pelvic binding after massive crush injury: A case report. Injury Extra. 2009: 84-86.
  10. Stewart M. BestBet: Pelvic circumferential compression devices for haemorrhage control: panacea or myth. EMJ. 2013; 30: 425-426.
  11. Croce MA, Magnotti LJ, Savage SA, Wood GW, Fabian TC. Emergent pelvic fixation in patients with exsanguinating pelvic fractures. Journal of American College of Surgeons. 2007; 204: 935-942.
  12. Knops SP, Schep NWL, Spoor CW, van Riel MPJM, Spanjersberg WR, Kleinrensink GJ, van Lieshout EMM, Patka P, Schipper IB. Comparison of three different pelvic circumferential compression devices: A biomechanical cadaver study. Journal of Bone & Joint Surgery. 2011; 93: 230-240.
  13. Knops SP, van Riel MPJM, Goossens RHM, Lieshout EMM, Patka P, Schipper IB. Measurements of the exerted pressure by pelvic circumferential compression devices. The Open Orthopaedics Journal. 2010; 4: 101-106.

How to cite this podcast:

Nutbeam T, Bosanko C. The Pelvic Binder. PHEMCAST. 2015 [cite Date Accessed]. Available from: http://www.phemcast.co.uk

Podcast: September 2015: The LMA

The LMA Phemcast

Here it is – our very first podcast, and guess what – it is on supraglottic airways!

This first episode reviews the history of the laryngeal mask airway and we discuss the relative benefits and risks of supraglottic airway devices. We’ve interviewed Dr Rob Moss, author of the Faculty of Prehospital Care (FPHC) Consensus Guidelines on pharmacologically assisted laryngeal mask (PALM) insertion. Click here for the link to the guideline.
We also met Professor Jonathan Benger and discuss the role of supraglottic devices in patients in cardiac arrest. Please have a look at the airways 2 trial website here.

References and resources:

  1. Benger JR, Voss S, Coates D, Greenwood R, Nolan J, Rawstorne S, et al. Randomised comparison of the effectiveness of the laryngeal mask airway supreme, i-gel and current practice in the initial airway management of prehospital cardiac arrest (REVIVE-Airways): a feasibility study research protocol. BMJ Open. 2013 Jan 31;3(2):e002467–7.
  2. Berlac P, Hyldmo PK, Kongstad P, Kurola J, Nakstad AR, Sandberg M. Pre-hospital airway management: guidelines from a task force from the Scandinavian Society for Anaesthesiology and Intensive Care Medicine. Acta Anaesthesiol Scand. 2008 Jul 9;52(7):897–907.
  3. Bosch J, de Nooij J, de Visser M, Cannegieter SC, Terpstra NJ, Heringhaus C, et al. Prehospital use in emergency patients of a laryngeal mask airway by ambulance paramedics is a safe and effective alternative for endotracheal intubation. Emergency Medicine Journal. 2014 Aug 14;31(9):750–3.
  4. Cook T, Howes B. Supraglottic airway devices: recent advances. Continuing Education in Anaesthesia, Critical Care & Pain. 2011 Mar 15;11(2):56–61.
  5. Deakin CD, Clarke T, Nolan J, Zideman DA, Gwinnutt C, Moore F, et al. A critical reassessment of ambulance service airway management in prehospital care: Joint Royal Colleges Ambulance Liaison Committee Airway Working Group, June 2008. Emergency Medicine Journal. 2010 Mar 19;27(3):226–33.
  6. Deakin CD, Peters R, Tomlinson P, Cassidy M. Securing the prehospital airway: a comparison of laryngeal mask insertion and endotracheal intubation by UK paramedics. Emergency Medicine Journal. 2004 Dec 20;22(1):64–7.
  7. Gruber C, Nabecker S, Wohlfarth P, Ruetzler A, Roth D, Kimberger O, et al. Evaluation of airway management associated hands-off time during cardiopulmonary resuscitation: a randomised manikin follow-up study. Scand J Trauma Resusc Emerg Med. 2013;21:10.
  8. Hasegawa K, Hiraide A, Chang Y, Brown DFM. Association of prehospital advanced airway management with neurologic outcome and survival in patients with out-of-hospital cardiac arrest. JAMA. 2013 Jan 16;309(3):257–66.
  9. Kajino K, Iwami T, Kitamura T, Daya M, Ong ME. Comparison of supraglottic airway versus endotracheal intubation for the pre-hospital treatment of out-of-hospital cardiac arrest. Crit Care. 2011.
  10. Mason AM. Prehospital Use of the Intubating Laryngeal Mask Airway in Patients with Severe Polytrauma: A Case Series. Case Reports in Medicine. 2009;2009(3):1–7.
  11. Middleton PM, Simpson PM, Thomas RE, Bendall JC. Higher insertion success with the i-gel® supraglottic airway in out-of-hospital cardiac arrest: A randomised controlled trial. Resuscitation. 2014 Jul;85(7):893–7.
  12. Moss R, Porter K, Greaves I, consensus group Faculty of Pre-Hospital Care. Pharmacologically assisted laryngeal mask insertion: a consensus statement. Emergency Medicine Journal. 2013 Dec;30(12):1073–5.
  13. Ostermayer DG, Gausche-Hill M. Supraglottic Airways: The History and Current State of Prehospital Airway Adjuncts. Prehosp Emerg Care. 2014 Jan;18(1):106–15.
  14. Ramachandran SK, Kumar AM. Supraglottic Airway Devices. Respiratory Care. 2014 Jun 2;59(6):920–32.
  15. Schmid M, Mang H, Ey K, Schüttler J. Prehospital airway management on rescue helicopters in the United Kingdom. Anaesthesia. 2009 Jun;64(6):625–31.
  16. Tanabe S, Ogawa T, Akahane M, Koike S, Horiguchi H, Yasunaga H, et al. Comparison of Neurological Outcome between Tracheal Intubation and Supraglottic Airway Device Insertion of Out-of-hospital Cardiac Arrest Patients: A Nationwide, Population-based, Observational Study. J Emerg Med. 2013 Feb;44(2):389–97.
  17. Wang HE, Szydlo D, Stouffer JA, Lin S, Carlson JN, Vaillancourt C, et al. Endotracheal intubation versus supraglottic airway insertion in out-of-hospital cardiac arrest. Resuscitation. 2012 Sep;83(9):1061–6.

How to cite this podcast:

Nutbeam T, Bosanko C. The LMA. PHEMCAST. 2015 [cite Date Accessed]. Available from: http://www.phemcast.co.uk